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A SAMPLE REUSE METHOD FOR ACCURATE
PARAMETRIC EMPIRICAL BAYES CONFIDENCE INTERVALS

Bradley P. Carlin and Alan E. Gelfand

ABSTRACT

Parametric empirical Baycs methods or point estimation cor a vector or unknown

parameters date to the landmark paper orJames and Stcin (1961). The usual approach

is to use the mean or the estimated posterior distribution or cach parameter, whcrc the

estimation or tie prior parameters ("hyperparamctcrs") is accorplished through the

marginal distribution or the data. While point estimates computed this way usually

perrorm well, interval estimates based on the estimated posterior (called "naive" B in-

tervals) are not. They fail to account ror the variability in the estimation of the

hyperparamcters, generally resulting in sub-nominal coverage probability in the "EB"

sense defined in Morris (19S3a).

In this paper we extend the work or Carlin and GePrand (199), who proposed a

conditional bias correction method ror developing EB intervals which correcr the defi-

ciencics in the naive intervals. We show howt bi.A correction can be implemented in

general via a Type Ill parametric boostrap procedure, a sample reuse method first em-

ployed by Laird and Louis (19S7). Theoretical and simulation results indicate that in-

tcrvals which arc accurate with respcct to nominal coverage ensue. We give two specific

applications (to binomial test data and Poisson failure rate data) where we compute si-

multaneous point and bias corrected interval estimates.

KEY WORDS: Confidence interval; parametric empirical Bayes; parametric bootstrap;

bias correction; conditional calibration.



I. INTRODUCTION

In this paper we consider the problem or multiparameter interval rstimation in the

parametric empirical Baycs ('E-1) framework. We consider the familiar exchangeable

model, where at the first stage, given 0, the data vectors 1: arc independently distributed

as, fQ,0,), i= 1, ... ,p. At the second stage, the 0, are supposed i.i.d. with distribution

z(0l ) over 0, where ?I indexes the family -,. The marginal distribution of L is

it, I q) = 5j Q, 10,) -z(O, I i)dO, , and the conditional independence structure of our model

implies that marginally the L" are independent. Thus the joint marginal distribution of

all the data is m(yli;) = in.(.i i). The posterior distribution of 0, depends on the data

only through v, and is denoted by f. (0, I,, i , though in the sequel we suppress the sub-

script on f to simplify the notation.

If n were known then point or interval estimates for 0, would be computed via the

posterior f(0, Iv,, q) . Generally, however, n is unknown. A pure Bayesian approach

would place a third stage prior (also known as a "hyperprior") -( I) on n and then base

inference about 0, on the 'marginal posterior,"

Ih(O0I y) = ff(OI I,, ,j)h(j I y)dq (I.1)

where h( I y) oc m(y]Ii)() . The hyperprior -r(n) is often given vague specification.

Usually computation of(l.l) is an arduous task. In recent years substantial efort has t -

been devoted to developing methodology to calculate the distribution (1.1) and its ..

characteristics. (see for example Naylor and Smith 1982, Tierney and Kadane 1986,

Smith et. al. 1985, Smith ct. al. 1987, and Gelfand and Smith 1989).

An alternative is the PEB approach, which treats Pj as a lxed unknown, and replaces

the integration over ?I in (1.1) with estimation of r (usually via maximum likelihood)
A A-- _

from the marginal distribution tn(y iq), obtaining ,i = q/(y) . Inference is based upon the

estimated posterior,' r Codes
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A,t).IX (1.2)

Note that (1.2) may be considcred an approximation to (.1) of order O(p'1 in the sense

that, under mild reguharity conditions.

A

EWg0 1) I y) -EMg0) IX, 1 0[1 + O(P'1)) (1.3;

(Kass and Stcflay, 19SS}. Expression (1.3) formalizes the fact that PEB estimates are

approximately fully Bayesian posterior means.

There is also a substantial amount of literature which demonstrates that, as an esti-

mator ofg(0,), E(g(0,)IA., n') often performs well in a decision theoretic sense (sec Morris,

1983a for a summary). Unfortunately, interval estimation of 0, through (1.2) has been

less successful; such "naive" confidence intervals based on appropriate percentiles of the

estimated posterior (either highest posterior density or 'equal tail' intervals) are gcner-

ally too short, and hcnce fail to attain the nominal coverage probability. The explana-

tion for this problem from a PEB point of view is that we are ignoring the variability in

i/; from a Baycsian point of view, that we are ignoring the posterior uncertainty about

q/. More precisely

Var(01i Iy) = EIY[IJar(0,tl,, ,r)) + Vr'), (1.4)

and so the variance estimate based on (1.2), J"ar(0,jv, i') , will, according to (1.3), only

approximate the first term in (1.4). Morris (1983b, 1987) develops improved approxi-

mations to (1.4) in special cases while Kass and Stcffey (1988) give a general first order

approximation.

We propose a more direct attack on the interval estimation problem. We first for-

malize our objective, nominal conditional or unconditional EB coverage. We then de-

scribe how to correct the bias in the naive interval estimate to meet the objective. Most
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importantly, we show that for many interesting problems implementation or the bias

correctio,, can be accomplished via a sample reuse method. In particular we employ the

Type Ill parametric bootstrap introduccd by Laird and Louis (1987), applying it to two

discrete cxponcntial family data sets.

In the EB framework (Morris 1983a,b, H lill 19SS) a statistical model is appealingly

specificd as a collection of joint probability distributions indexed by some parameter,

p = (pn y, 0) , q e H). (1.5)

A member or this family is expressible in the sampling rorm as p,0, 0) f(y 1 0) r(O 1 i),

or in the inferential form as pt,(y, 0) -f(0 I, i) n(y Iq) . Performance of an inference

procedure is evaluated over the variability inherent in both 0 and the data. Thus an

unconditional EB confidence set of size I - a for g(O) is a subset t.(Y) ofr such that

inr P,,(g(O) r ,=(Y)) > I - a. (1.6)
P

Equation (1.6) has becn criticized as being a weal. statement. First, we would likely

prefer P,(g(O) e to(Y)) = I - a over all distributions in p. Second, we would likely prefer

a probability statement which offers conditional calibration given some appropriate data

summary (Rubin, 1984). For instance a pure Bayesian interval would be based upon

1(0,I y), and so is conditionally calibrated given all the data. We propose modifying (1.6)

to a conditional statement by integrating instead over the distribution p(O,, y I b(y), ij) for

a suitable statistic b(Y) . That is, t,(Y) is a conditional I - a EB confidence set for g(O)

given b(Y) if, for each b(y) = b and q ,

P,f(g(O) e t,(Y) I b(y) = b) - I - a. (1.7)

In Section 2, we review the "bias correcting" approach (given in Carlin and Gelfand,

1989) for obtaining intervals achieving this sort of coverage probability usir.g various

choices of b(Y). We then settle on b(Y) Y , as a natural choice, and elaborate on sam-
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plc reuse methods to implemc.nt the bis correction. Section 3 discusses thc mechanics

of hypcrparametcr estimation and Ii; point and interval estimation of 0, in the context

of two discrete models, tile binomial and the Poisson. For illustration, the analysis of

two data sets is given in Section 4. Finally in Section 5 we summarize and comment on

some remaining problems.

2. PEB MODELLING AND BIAS CORREcMiON

Adopting the EB framework we define the cn'nceptq or sufficiency and ancillarity (see

Hill, 19SS) ror the model (1.5).

Definiti -1 1. A statistic T is stfficicnt for g(O) in (1.5) if and only if

* T is sufficient for g(0) in tile posterior family, i.e., f(g(O) I t, :) =f(g(0) I y, i/) for all

il e H, and,

0 T is sufficient for q in the marginal family, i.e.. in (y I t, q) = i (y I ) for all q e H.

For example, under the exchangeable structure of Section 1, if g(O) = 0,, then usually

Using this definition it is straightforward to show that T carries all the information

about t! in the model with respect to inference about g(O), i.e. we may replace Y ty Tin

(1.6) and (1.7). In particular for 0, we need only study intervals based on .I and "

Definition 2. A statistic A is ancillary forg(0) in (1.5) ifand only if T= (qz, a) is minimally

sufficient for g(O), where qj is an estimate of it, and p(a I q) = p(a) for all n7 e H.

Thus ira is ancillary, its distribution with respect to the marginal family is free orl. In

this definition, minimal sufficiency is with respect to (1.5) using Definition 1.



in the sequel we take gril ,0, and let (UI 1i he a Ucneric notation for the distrih-

ution of' U iscn V. To stren;thcn the statcment (1.6) suppose we replace tlc intc-

gration over (0, J, )11q)) in (I.(, with an integration over [O,., i I b(Y), oj). I re takc

b(Y) = Y then we are in fact integrating over (0,j1, I, the posterior distribution of o,.

Ir we choose bY) Ell-ancillary, thcn typically (I,, I,,) are such that fixing any two of

thcm dctermincs the third. This means that usually CO,,.J, .b, lb)

(O,, 1i ;,, b. )II .- ( lb. 10 (0,I.E, q I q), where we have used Basu's well-known

theorem in the last step. Thus if we can find an 13.1-ancillary statistic, we carn develop

intervals with EB-coverage conditional on the ancillary merely hy integrating first over
A

the Full posterior and then over the sampling distribution or our estimator Y1. I lowevcr

in the discrete cases we study, and in ract rather generally, exact ancillary statistics arc

not available. Wc have not investigated the notion of approximate ancillarics. If" we

instead take b(Y) = , then our integration is over [0,, , I.i ) ,= 0 (n 1 £rIJ., q] .

rhis choice of b is appealing since -L is sufficient for 0, in the posterior family. Addi-

tionally, this conditioning is straightforward to implement.

i rwe denote the a' quantile of the posteriorf(0,, Pj) by qQ, , 1j), then the so.called

equal tail "naive' Ell interval can be written as

As has already bccn noted, intervals of this type fail to satisfy (1.6), and their coverage

conditional on 1 is also poor. Most of the work in the area of EB confidence intervals

has focused on 'lengthening" thcse intervals by using the marginal posterior (1.1), either

exactly or approximately. Decly and Lindley '()Sl) and Rubin (19S2) pcrform the nu-

merical integration and compute 1, directly. Mnrris (1987) advocates use of the member

orff(0,1h,, ,I) whose first two moments agree with the ii, t two (estimated) moments of

,. Laird and Louis (1987) suggest the use of a parametric bootstra'p sampling mctned
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(whicih we disxuss in some Jetail belowt to approximate (1.1) where h is taken to he

p(z i, the sampling density of ri, with the zirgunicnts interchangcd.

In our view, the weakness of' these approaches is that they fail to address the salient

issue. the existence and nature of an h which will be successful in achieving nominal ClB

coverage. Put simply. thty arc all concerned with "matching" !. in (1.1), without speci-

Vying how to choose h to begin with. T'his is understandable. as the whole approach is

not directly aimed at attaining a specificd level of 1:1 coverage (either conditional or

unconditional). lurthermorc, while the lengthening of the naive intervals created by the

"mi.ing" in (I.1) is usually desirable, if our estimator ?zis badly biased, thc naivc intervals

can actually turn out to be too long. The real issue is how to correct the bias in (2.1).

A direct approach which would be applicd to each tail separately is as follows:

Suppose we define

r(i;, ,j,~) = N O, --- q2.(I1, ?1) I O-f(Ohli,. ,)) (2.2)

and

A

R(i:j, a) = E - {r(il, 1,, ). (2.3)

Ifwe then solve

R(?I, vj, a') - a (2.4)

for a' -a'(,,,, a), we conditionally "correct the bias" in using ;1. Of course (2.4) is not

solvable as it stands since q is unknown. Using n, we propose to obtain a bootstrap

estimate of the left hand side of(2.4) and thus solve instead for a'(ij,,v,, a) . We correct

both the lower and upper percentiles of our naive interval, obtaining aL' and a,', and

then take
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as our bias corrected inter',l ror U.

Carlin and Ge!rand (19SQ) showed that this bias corrected confidence interval is

unique provided Vrlea exists. rhey further showed thit if the distributions

f (0.lx, 0z) and S() J -, q) are stochastically ordered in 1, then conditional bias correction

works" with respect to (1.71, i.e. E r (q, 1,' a)) , the expected conditional

bias corrected tail probability, l, lls in an interval containing a (for some n, it will be

slightly more than a- ror others. slightly lessi. They also provide simulation support in

several elementary cases. Note that while we describe bias correction of the naive in-

tcrval (2.1) we could just as well have chosen to bias correct intervals resulting from

(.1). Such correction could be used to possibly obtain shortcr intervals achieving de-

sired coverage levels.

Let us bricfly investigate tle mechanics or bias correction. firn(0?l) is chosen as the

standard conjugate prior forf( 0.I ) then ofcourse the posteriorf (0, I ,, nj) belongs to the

same standard family, and r in (2.2) takes the relatively simple form

A - -r~, 1Xi2121, . [F (a)] (2.6)

where F is the posterior c.d.r. To compute R in (2.3) necessitates integrating over the

distribution g(j 1v,, ui) . If g is available in closed form this will require a numerical in-

tegration (either Monte Carlo or other quadrature method). Then we compute the

marginal M LE qz and solve equation (2.4) at )J = q for a' via regula falsi. "Ihs replace-

ment or an unknown population parameter by its estimate from the marginal empirical

c.d., is rererred to as a 'parametric bootstrap" by Laird and Louis (1987).

Examples where this procedure can be carried out cfficiently and easily are discussed

in Carlin and Gelfand (1989). However. in many cases (in particular the discrete settings



in Section 3 it closed krm tor roj qIx, w is unavailhle. In fact, in several clenmentarv

conjugtk: %Ituation1. tile marginal MLIl: i itseir has no closed form and can onl." be

computed numerically. In such cases wc estimate Rqol,, 2) throu,0i the uso or., "'rype

Ill parametric bont~trap.' a sample reuse method introduced by Laird and Louis (1987)

and modificd here for the case or liB cov cragc conditional on .

Let us first review the unconditional version. To estimate expectations under tie

sampling density or q, pmq 10) we obtain q1 rrom the distribution p( I i) as rollows.

Draw 0;,... , 0; i.i.d. rom -.()0 , then draw .1 independently fromf!(t 0:). i- I, ... ,r,

and finally compute i1' rom the "pseudodata" (i) in the same way that ;I Was computed

rom iahe data I1: . Concisely, we hve

(0;" - (.0 (2.7)

For correction conditional on .1, we modily the Laird and Louis procedure in order

to draw observations from g rather than p by changing (2.7) to

, 0 -.0,, -. . .u &i) -kii ki" ,(, , i)) (2.S)

Repeating this process X\ times we obtain q;-g(. I, ) ,... , N, and our Type Ill

parametric bootstrap estimatc or R(YI,:,, c') becomes

,, , c') IN. (2.9)

We cquate (2.9) to a , and solve for cc' by rcgula aisi as above. Note that since only the

1: are needed to calcu!ate 7, irmCvI?) can be sampled from directly we un omit the

generation or the 0: (see Example 3.2).

The Type Ill parametric bootstrap can obviously be modified to implement bias

correction conditional on b(Y) other than J. I lowevcr the theoretical results below (2.5)

are only established given .E.
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3. SPECIFIC DISCRETE MODELS

We now appl. the preccding methodology to perhaps the two most common discrete

models.

Example 3.1: Binomial-beta. Suppose the dh'ta vectors 1 are simply vectors orzcroes

and ones, cach clement corresponding to a success or railurc on the j independent

Bernoulli trial in the P- population,j,- I, ... , , i1 ... ,p. At the first stage or the hi-

erarchy, we assume the probability or success on any given trial to be the same ror all

trials within the P population, but possibly di(erent across populations. By sufficiency

we reduce to X - 1E , and so Xi 0,- Bin (n, 0,) . Under the conjugate prior

O.1 Ij- Bcta (a, b, I ... . ,p , where q (a, b), a, b > 0, the posterior distribution is

f(0,1.r',, a, b), Beta (a + x,, b + n,-.,x) , and the marginal distribution is

,ixj a, b) =, i)I(a + ., b + n, - x,)/(a, b), where B(.,.) represents the beta runction.

The marginal likelihood,

p
L(a, b) = ,(s I a, b) = rl (.')B(a + .v, b + i, -. v 1IB(a. b), (3.1)

is maximized via numerical methods to produce the marginal M l.E, ii (a, b). The naive

EB confidence interval (2.1) is computed as (Y -, ..,. (a/2), Y ; ". - (1 - /2)),

where Y,"., is the c.d.f, of a beta distribution with parameter c and d.

To implement the bias correction we note that (2.2) becomes

r(1,, I -xp-, a) = -(+ X,. b+ n, - X,)(--(, + X,. b + , -X )()) (3.2)

which is available numerically using a scientific subroutine library. Using the Type Ill

parametric bootstrap procedure (2.9) becomes

Y . : (Y-. x,)( '))IN (3.3)
J1 (0 + .X, b -b7,, x)( X.. b+



which we equate to a and solve ror a'. Setting a to the desircd nominal level (e.g.,

a=, (.05,.9) for 90% conditional I'B coverage), we solve ror the corresponding

(a', a.'), and compute our interval for 0, using (2.5). Note tlmt we bias correct cach

O,-intcrval separately, i,- I, ... ,p, but or course the correction in each case depends on

the data through (5, 6). I rwe desire intervals corrected only for unconditional 1B cov-

crage, our bootstrap equation becomes

SIN -_ c, (3.4)
ji (a +, .b + n, - Y(jC +.b,1Xj)) = I ,

Note that (3.4 differs from (3.3) only in replacing the given value x, by the bootstrapped

x; 's. Now we arc "averaging over .\," as in (1.6). rather than conditioning on V,. We

must still bias correct each 0,-interval separately, unless we have a balanced experiment

(all n, equal). In this case the x,'s are marginally exchangeable, hence so are the x, 's,

and so we need only solve (3.4) once for (a,, au) before using (2.5).

Example 3.2: Poisson-gamma. Suppose we have data or the form (x,, r,), i = 1, ... pe

where the x, are observed counts during the time interval (0, t,). For example, the data

might be calls arriving at p different switchboards in the same :ounty. We assume

A0 10# Poisson (O,t,), i= 1, ... , p, where the i, are known "time exposures." Under the

conjugate prior, 0,1 n, Gamma (a, b) (again I = (a, b), a, b > 0 ), the posterior distrib-

ution O,! x, is Gamma (a +x,, (t, + Ilb)-') , and the marginal distribution of , is Nega-

tive Binomial, i.e.,

a,-,]= (It) b (3.S)

If(a, b) maximize the marginal likelihood (a and b are not available in closed form; see

Section 4), then the naive EB confidence interval for 0, is

II



+)a2/2t+Ili,)), D2 j'+.P( -~ cc2)1E2(:u + 11b)) (3.6)

where I), denotes the c.d.f, or a chi-square distribution with k (not necessarily integer)

degrees or freedom.

In this case (2.2) becomes

,j((l+ I/1b) 1(t11+ I lb)] D -. ' ()) (3.7)

r')r rB correction conditional on ,, .,, analogous to (3.3), the Type III parametric

bootstrap (2.9) becomes

*N^

ZD2( +,)([(, + llb)I (+ l/L')] 2 +. ,)(')) IN (3.S)

which we equate to a and solve for a'. For unconditional correction analogous to (3.4)

we have the equation

D2(. +x")[[(t+ llb)l(t+ I/b;)) D2".+X)(a')) IN = a (3.9)

The remark after (2.9) reminds us that in this case we would generate negative binomial

XA's directly. In addition, if t, = t for all i, we need only solve (3.9) once for (0L', aU)

before using (2.5).

In this example if we take the gamma scale hyperparameter b to be kne-vn (say

b = I w.l.o.g.), and if we assume t, = i (= 1 w.l.c.g.), then the marginal faml~y (3.5) is

Negative Binomial (a, 112). The method of rimments (instead of maximum likelihood)

estimator of a is a = X = Z-I/P "ind the distribution of A I x,, a follows from writing

= (it' + X,)Ip where III- ZX,-- Negative Binomial (a(p - 1), 1/2). Thus we can inte-

grate (2.4) directly, avoiding the Type 11I resampling algorithm.
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4. DATA EXAMPLES

We illustrate the implementation or the bias corrected naive IB confidence interval

approach with two discrete data sets. Results or several simulation studies evaluating

coverage probabilities and interval lengths arc discussed in Carlin (19S9).

The data set in Table I comes from Burton and Turvcy (193S), and gives the results

of a psychological cvaluaion of sLx independent subjects. Each subject was given three

hollow wooden balls, two or which contained a small pyramid and the third either a

hemisphere, a block, a cylinder, or a cone. On each or the tour resulting trials, the

subject had to guess which ball was not like the others simply by shaking, turning, ctc.

Table I gives the results or this (balanced) experiment, where X is the number or

questions answered incorrccil by subject i, and r, is the raw failurc rate, which of course

is also the usual classical point estimate o O,, the true failure rate ror subject i.

(Insert Table 1 about here)

In terms of modelling this experiment, our binomial-beta model seems natural. At

the first stage (given 0,), a subject's rour responses could reasonably be assumed to be

i.i.d. Bernoulli trials, and the beta provides a broad choice for the second stage distrib-

ution of the (0,) . In ract, since our prior belief is that the questions arc relatively easy,

the simpler ramily Bcta(l, b), b > I seems adequate. Finally this data set benefits sub-

stantially rrom empirical Bayes modelling, since the small amount of inrormation on

each subject severely limits rrequcntist inference.

(Insert Table 2 about here)

The results or our analysis arc given in Table 2. Since we are in a balanced (i.i.d.)

case, the results for subjects I and 2 (who both answered two questions incorrectly) are

identical, as are those for subjects 4, 5 and 6 (all of whom made no mistakes). Note the

familiar shrinking or the classical point estimates toward the overall proportion of
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questions answcred incoriectly (5,24 = .20S) by the EB point estimator. Classical con-

fidence intervals (based on Fishcr's exact test statistic for 0,) and naivc E) intervals are

shown, along with versions that are bias corrected unconditionally (via (3.41)) and con-

ditionally (via (3.3)) for nominal coverage V = .90. We chose N- 1000 bootstrap rcps

in solving these two equations. using FORTRAN augmented by the IMSL subroutine

library. One can see that both types of bias correctcd intervals have lengths that are

between those of the classical and naivc EB methods. However, since nominal condi-

tional coverage implies nominal inconditional coverage, neither bias corrected interval

can be uniformly shorter. In particular we see that the conditional intervals are shortcr

when X = 2 , but that the unconditional intervals arc shorter when X - 0.

The data presented in 'rablc 3 record numbers of pump failtires, ,, obscrvcd in

thousands of hours, t,, for p = 10 different systems of a certain nuclear power plant.

The observations are listed in increasing order of raw railure rate r, - X/l,, which again

is the classical point estimate of the true failurc rate 0, for the eh system. This data ori-

ginally appeared in Worledge, Stringham, and McClymont (19S2), and was subjected to

an empirical Bayes analysis by Gaver and O'Muircheartaigh (1987).

(Insert 'ablc 3 about here)

Our approach is that off Example 3.2 above, using the conjugate Gamma(a, b) prior

for 0,. Gavcr and O'Muircheartaigh also explore this approach, but after computing the

estimated posterior (also gamma, of course) in the usual way, they obtain an approxi-

mate EB confidence interval for 0, by assuming that the posterior distribution of

c, = log(0) is approximately normal. Thus their EB point estimate for 0, is cxp(p,), and

their naive 90% EB confidence interval for 0, is given by

exp(AlP- I.64 ) ,cxp(p, + 1.64541, (4.1)



where iz, and a. are the mean and standard deviation, respectively, of the log-gamma)

estimated posterior for c,. (Actually, the authors' concern about conjugate priors'

ovcrshrinkage or outliers leads them to prcrcr a heavicr-tailcd log-Student's t prior on

c.. Howcver, they conclude that this assumption does not grcatly affect th results. To

make a fair comparison, we will compare our intervals only with their gamma-bascd in-

tcrvals.)

Solving (3.S) and (3.9) involves computing N NIE vectors (a;, b;), one for each

bootstrapped pseudodata sample. fn order to expedite the maximization Givcr and

O'Muircncartaigh suggcst using as starting values crude moments estimators obtained

by equating the first two sample moments or the crude rates, F and S,, to the corrc-

sponding moments in the marginal family, namely, E(r,) -E(Xa),=b and

~ i'or(X\,)It, =abli, + abl . This results in

-T- (4.2)

and

b =o -% - F ]IF (4.3)

where t-1 = Zt,-'p. (These estimators do not exist i ., Fi , whence any other rea-

sonable values, possibly the 'parent" values (64, b), can be used.) Our algorithm begins

with Newton-Raphson. Irit diverges, we use a local grid search to find a better (higher

likelihood) place to restart. We iterate grid search and Newton-Raphson up to twenty

times, finally giving up and regenerating new pscudodata if the algorithm still fails. We

were able to keep the "failure rate" under 1% using this algorithm.

Gaver and O'Muirchcartaigh felt that the intervals (4.1) were likely to be too short

due to hyperparameter estimation. Their ad hoc rcmcdy was to compute approximate

joint 95% confidence regions for their computed values of (a = .8223,/; = .7943) using

a chi-squared likelihood ratio technique. They then searched over all (a, t) in this rc-
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Sion, taking tile largcst value or cxp(t, + 1.645&,) obtained as their "corrected" upper

confidencc limit for 0,. (A similar proccdiurc could have becn undertaken ror the lower

limit, but was not since the authors' interest was, understandably, only in how large the

railurc rates could be.) While this process certainly does increase the upper confidcnce

limit, it is not clear what confidcnee level to attach to it.

(Inscrt Table 4 about here)

Table 4 gives the results for observations 1, 5, 6, and 10 using the classical intcrval,

(112- D -,(aI2), 112. D .Jl( - *12)), applied to the raw rates, the naive and corrected

Gavcr and O'Muirchartaigh (G & 0) methods, the naive ER interval (2.1), and the

conditional and unconditional bias corrected methods (3.8) and (3.9) above. Bias cor-

rected percentile (a') va ucs used in these methods are shown in parentheses below the

corresponding interval endpoint.

Some conclusions are: while the classical point estimates seem all right, the corre-

sponding interval estimates are very wide. The naive G & 0 point estimates have been

uniformly shrunk close. to zero than the regular EB point estimates, while the corre-

sponding upper confidence limits are uniformly further from zero. The naive G & 0

interval estimates arc not necessarily too short; in the case of the smallest observation,

the naive G & 0 upper limit is already larger than either of the bias corrected upper

limits! The "con'ectcd" G & 0 upper limit is always much larger than that or any of the

other EB methods, reflecting the substantial conservatism embodied in this procedure.

Note that more bias correcting (more extreme values of a', hence longer confidence in-

tervals) is present for cases having shorter history (smaller t,) -- observation #5, for ex-

ample. This jibes with our intuition about EB point estimation: that cass with less

infcrmation have more uncertainty associated with them and possibly exhibit more ex-

treme shrinkage patterns. It also appears that conditioning on the value of a more

highly variable X, (like observation #5) results in a longer interval than would have been

obtained had only unconditional coverage been sought.

16



5. CONCLUSION

In this paper we have described a sample reuse method (the Type Il parametric

bootstrap) to correct the bias in naive empirical Dlayes confidcnce intervals when trac-

table distribution theory it unavailable. Through tiata cxamples we havc shown that this

mctlod is easily implemented yielding intervals which retain much o thc intuitive appeal

associated with PEB and shrinkage estimation. Future effort is directed at more general

applications. For example, the conjugate prior assumption may be dropped, using nu-

merical methods to evaluate (2.6) in the absence ora convenient form for thc posterior.

Additionally we might choose to bias correct intervals based on the marginal r-osterior

(1.1), rather than the naive intervals based on the estimated posterior (1.2). Beginning

with a richer class orintervals could lead to shorter corrected intervals achieving nominal

coverage. Finally, efforts to unite the PEB and hierarchical Bayesian literature, as in

Section I of this paper as well as Kass and Steffey (198S), continue to be important.
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TABLE 1. Pychological Test Data

Subject A .\' in

1 4 2 .50
2 4 2 .50
3 4 I .25
4 4 0 .00
S 4 0 .00
6 4 0 .00Source: Ilurton and Turvey (1988)

TABLE 2. Psychological Test Data Analysis
Subject 90% Classical Cl EB 90% Naive EB CI

i r, Luver Upper Length Pt Est LoAer Upper Length
1,2 0.500 0.09S 0.902 0.805 1 0.336 0.112 0.604 0.491
3 0.250 0.013 0.751 0.739 0.1224 0.047 0.474 0.427

4,56 0.000 0.000 0.527 0.527 0.1 12 0.006 0.315 0.30S

Subject 90% Unconditional BCN C! 90% Conditional BCN C!
i Loier Upper Length Lower Upper Length
1,2 0.1OS 0.690 0.582 0.100 0.627 0.528
3 0.044 0.570 0.526 0.047 0.576 0.529

4,5,6 0.006 0.415 0.409 0.008 0.455 0.447

Note: 1lypcrparamctcr estimate (M LE): b - 3.9296.

TABLE 3. Pump Fi!-.re Data

ASysft, A, t. r, -

I 1 94.320 .053
2 1 15.720 .064
3 5 62.880 .080
4 14 125.760 .111
5 3 5.240 .573
6 19 31.440 .604
7 1 1.04S .954
8 1 1.048 .954
9 4 2.096 1.910
10 22 10.480 2.099

Source: Electric Power Rcscarch Instict Report
(Worledge, Stringham, and McClymont 1982)
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TAIIIE 4. Pump alilurc )ata Analysis
III stirma 90% Co#,Irhc,.e lnkmal 1nttcn:l IApgth

Obocnaion" I
Classical .053 .000 3.09S 3.098

'Naiv'c 0 & 0 .056 .027 .114 .087

"Corrcctcd* 0 & 0 ".- .125 ...

,aivc C-11 .061 .026 .107 .GSI

Unconditional BICN .026 .109 .0S3
(.0472) (.9533)

Conditional BCN .025 .AOS .0S2
(.0453) (.9507)

Clasuscal .573 .001 4.032 4.02S

"Naivc" 0 & 0 .512 .207 1.258 1.051

'Conrcctcd" G & 0 0 1.553 ...

Naive 11 .5SS .195 1.154 .959

Unconditional BCN - .158 1,271 1.114
(.026S) (.9705)

Conditional BCN .163 1.284 1.121
(.0298) (.97211

Obscnation: 6
Cassical .604 .006 4.087 4.08I

N\aivc" G & 0 .577 .395 .861 .466

*Coricd"G & 0 1 ... .905

Naive 131 .606 .401 .846 .445

Unconditional BCN .394 .863 .469
(.0437) (.9594)

Conditional BCN .398 .863 .465
(.0471) (.9594)

Obsn'lation: 10
Classical 2.099 .396 6.444 6.048

*Naive" G & 0 1.896 1.343 2.691 1.348

"Corrcctcd" G & 0 - .-- 2.945 ...

Naive 1B 1.944 1.327 2.658 1.332

Unconditional BCN - 1.230 2.735 1.505
(.0250) (.9638)

Conditional BCN 1.311 2.674 1.363
(.0452) (.9532)
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